Skip to main content Skip to secondary navigation
Main content start

MOOCs and Makers: Online and hands-on learning at Stanford Engineering

Stanford Engineering is a leader in both hands-on learning environments and in the virtual approach to education through massive open online courses, or MOOCs.

With its saws and drill presses, furnaces and 3-D printers, the Product Realization Laboratory at Stanford Engineering allows students to think with their hands. In an age of nano-this and mega-that, such a goggles-and-apron setting might seem anachronistic. But more and more students are taking classes through the PRL. At the same time, a growing number of courses are being offered through the School of Engineering’s Hasso Plattner Institute of Design, fondly known as the d.school. Mushrooming interest in these programs attests to the fact that Stanford students want to design and make things.

Meanwhile, some faculty members are taking the craft of teaching in an opposite, virtual direction. In 2011, a trio of Stanford Engineering professors made their courses freely available on the Internet and sparked a new interest in massive open online courses, or MOOCs. This development drew media attention, but the real story is how faculty members are experimenting with different teaching methods to improve the educational experience of students on campus.

These initiatives may seem contradictory, but School of Engineering Dean Jim Plummer sees a common thread: Both were launched by faculty members seeking to improve and extend the education of Stanford engineers.

“One of the things that is special about Stanford is that the faculty drives change,” Plummer says.

On one hand, the PRL and d.school provide academically rigorous experiences that reflect the same creative impulse expressed in the broader culture through the Maker movement.

“The huge success of our product design programs shows that people want to make things,” Plummer says. On the other hand, Plummer notes that massive open online courses afford faculty members a chance to reach a broad audience all over the world and teach students on campus in new ways.

“At the end of the day, this place produces people and ideas,” Plummer says, adding, “Stanford Engineering has incredibly imaginative faculty who are always looking for the best ways to engage and energize our students.”

Makers, then and now: The tradition and tools of prototyping now include 3-D printers and a focus on design thinking.

Dave Beach, co-director of the Product Realization Laboratory, notes that hands-on training at Stanford predates the Maker meme. “We’ve been making things here since the Student Shop was founded in 1891,” he says, adding that while other universities let their shops atrophy, Stanford preserved the tradition and the tools for prototyping. In the early 1970s, the Student Shop morphed into the Product Realization Laboratory.

The PRL was inspired in part by John Arnold, a former mechanical engineering and business professor who was a pioneer of human-centered design, now a central tenet of teaching at Stanford Engineering. Early mentors of the PRL included two emeritus professors of engineering, Robert H. McKim, who helped expand the teaching of a hands-on, human-centered approach to design, and Jim Adams, who integrated a fresh focus on creativity, innovation and design into the curriculum. In 1973, PRL enrollment was 150. The program has grown steadily over the years. In 2010, PRL enrollment stood at 700. By the 2013 academic year, 1,700 students were taking these hands-on classes.

Another inflection point in this Maker trend on campus came in 2005 when David Kelley, the Donald W. Whittier Professor in Mechanical Engineering, founded the Hasso Plattner Institute of Design. The d.school, as it is commonly called, brings together instructors from engineering, business, education and social sciences. Classes at the d.school put engineering students together with collaborators from other academic disciplines to work on project-focused teams. Students learn design thinking and come up with breakthrough ideas. They develop confidence in their creative abilities, a central goal of the program.

New technologies help fuel interest in making things, notably low-cost 3-D printers that build prototypes one layer at a time. Such printers are controlled by computer programs that can be shared online, a fact that allows Makers to mix and match modules as they design their 3-D creations.

From his vantage as the Bosch Chair of the Mechanical Engineering department, where the PRL and d.school converge, Ken Goodson looks beyond the confines of the school and the university. Some mass markets are giving way to niche markets. Product cycles are shortening. Goodson believes the time may be ripe for small batches of customized goods produced by smart, nimble teams of tech-savvy Makers. “We may be seeing the seeds of a revival of U.S. manufacturing, with Stanford at the heart of it,” he says.

Flipped classrooms and MOOCs: Advances in online education improve teaching and learning in classrooms on campus.

MOOCs sound exotic, but they are only the latest tech-based way to teach outside the traditional classroom. Stanford has been a leader in distance education for more than four decades, since the inception of the Stanford Instructional Television Network and continuing to the present through the Stanford Center for Professional Development.

The novelty that MOOCs bring to distance education is “the power of the deadline,” says Bernd Girod, the Robert L. and Audrey S. Hancock Professor of Electrical Engineering and Senior Associate Dean for Online Learning and Professional Development.

“MOOCs move students through weekly assignments just like a conventional classroom-taught course,” he says, breaking with the conventional wisdom that once saw self-pacing as the key strength of online learning. “One of the things we’re seeing is the power of the deadline to focus attention,” Girod says.

Girod works closely with John Mitchell, the Mary and Gordon Crary Family Professor in the School of Engineering and Stanford Vice Provost for Online Learning.

“There are many ways to use technology creatively. While our main goal is to improve teaching and learning on campus, MOOCs are a good way to experiment and reach a broader community, including our alumni,” Mitchell says. “By advancing faculty-driven online teaching initiatives, we can transform how time is spent in the classroom and transform education for students—both at Stanford and beyond.”

Jennifer Widom, the Fletcher Jones Professor and chair of Computer Science, was one of three Stanford Engineering faculty members who launched the new MOOC movement by putting their courses online in the fall of 2011. Her experience demonstrates the link between MOOCs and the ongoing focus on classroom education.

Widom says one reason she became involved with MOOCs was that she had already been preparing to put much of her class materials online in an innovation called the flipped classroom, which is aimed at her Stanford students. In a flipped classroom, professors put lectures and assignments online, and use class meetings for such things as problem-solving exercises, guest lectures or brainstorming discussions. Widom found it relatively easy to make a pared-down version of her flipped Stanford course widely available online.

“There’s a lot of satisfaction in bringing this material to the world,” Widom says. She recalls one Stanford alumna, a stay-at-home mom looking for intellectual enrichment, who was in the middle of taking the course when she visited Widom in her office during reunion weekend to say, in effect, “Your MOOC saved my psyche.”

Widom, who was preparing to offer her MOOC for the third time when she spoke for this article, said that although the Stanford course is considerably enriched from the MOOC version, the online experience positively impacts Stanford students. “One of the benefits of having tens of thousands of eyeballs on your lectures is that everything gets thoroughly debugged,” she says. Her teaching evaluations from Stanford students taking the new flipped version of the course are statistically better than scores before the class was flipped; in other words, students seem to like it.

“Encouraging experimentation is one of the reasons we’re doing this,” Girod says. He considers MOOCs an evolution rather than a revolution in education at Stanford, blending the best of online and classroom learning. “If you ask me how Stanford is going to look in 2020,” Girod says, “we’re still going to have the most beautiful campus with the foothills in the background and blue skies and the best residential student experience in the world.”