Main content start
Assistant Professor of Microbiology and Immunology and of Bioengineering
Matthias Garten
Assistant Professor of Microbiology and Immunology and of Bioengineering
Matthias Garten, Ph.D., is an assistant professor in the department of Immunology and Microbiology and the department of Bioengineering. He is a membrane biophysicist who is driven by the question of how the malaria parasite interfaces with its host-red blood cell, how we can use the unique mechanisms of the parasite to treat malaria and to re-engineer cells for biomedical applications.
He obtained a physics master's degree from the Dresden University of Technology, Germany with a thesis in the laboratory of Dr. Petra Schwille and his Ph.D. life sciences from the University Paris Diderot, France through his work in the lab of Dr. Patricia Bassereau (Insitut Curie) investigating electrical properties of lipid membranes and protein - membrane interactions using biomimetic model systems, giant liposomes and planar lipid membranes.
In his post-doctoral work at the National Institutes of Health, Bethesda in the laboratory of Dr. Joshua Zimmerberg, he used molecular, biophysical and quantitative approaches to research the malaria parasite. His work led to the discovery of structure-function relationships that govern the host cell – parasite interface, opening research avenues to understand how the parasite connects to and controls its host cell.
He obtained a physics master's degree from the Dresden University of Technology, Germany with a thesis in the laboratory of Dr. Petra Schwille and his Ph.D. life sciences from the University Paris Diderot, France through his work in the lab of Dr. Patricia Bassereau (Insitut Curie) investigating electrical properties of lipid membranes and protein - membrane interactions using biomimetic model systems, giant liposomes and planar lipid membranes.
In his post-doctoral work at the National Institutes of Health, Bethesda in the laboratory of Dr. Joshua Zimmerberg, he used molecular, biophysical and quantitative approaches to research the malaria parasite. His work led to the discovery of structure-function relationships that govern the host cell – parasite interface, opening research avenues to understand how the parasite connects to and controls its host cell.